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Instability of the alternate-bar type in straight channels has long been identified as 
the cause of fluvial meandering. The condition of inerodible sidewalls, however, does 
not allow a meandering channel to develop. Herein a stability analysis of a sinuous 
channel with erodible banks allows for delineation of a ‘bend’ instability that does 
not occur in straight channels, and differs from the alternate-bar instability. 

In  the case of alluvial meanders, the two mechanisms are shown to operate at 
similar characteristic wavelengths. This provides a rationale for the continuous 
evolution of alternate bars into true bends such that each bend contains one alternate 
bar. 

The same bend instability applies to incised meanders. A mechanism for incised 
alternate bars which differs from that for the alluvial case appears to operate at 
different characteristic wavelengths than that of bend instability. Analysis of data 
suggests that meandering in supraglacial meltwater streams is primarily due to the 
alternate bar mechanism, whereas the meandering of rills incised in cohesive material 
and of caves is likely due to the bend mechanism. 

The meander wavelength of incised reaches of meandering streams is often longer 
than that of adjacent alluvial reaches. An explanation is offered in terms of bend 
instability. 

1. Introduction 
Stability theories of fluvial meandering have proliferated since the original work of 

Hansen (1967) and Callander (1969), and include the work of Adachi (1967), Hayashi 
(1970), Sukegawa (1970), Engelund & Skovgaard (1973), Parker (1975,1976), Ponce & 
Mahmood (1976), Hayashi & Ozaki (1976), and Fredsoe (1978). Parker (1975) treated 
the incisional case, for which only erosion occurs. Examples of this type are bed- 
rock meanders, meltwater streams on ice (Leopold, Wolman & Miller 1964), cave 
meanders (Smart 1977), and badland rills (Ashida & Sawai 1977). The other analyses 
treat the more familiar case of alluvial meanders. 

All the above analyses are, however, unsatisfactory due to the fact that bank 
deformation is not allowed. They treat only the formation of alternate bars between 
straight, non-erodible banks; the flow may wind about the bars, but the channel does 
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FIGURE 1. Straight channel with inerodible banks and erodible bed 
containing submerged alternate bars. 

not meander (figure 1). It has been implicitly assumed that the concentration of flow 
against the bank opposite each bar would induce bank erosion, leading to a truly 
meandering channel with an initial wavelength close to that of the bars from which it 
derives. While this has been observed experimentally, it has never been given a 
mechanistic justification. 

A first step in this direction was taken by Ikeda, Hino & Kikkawa (1976) (an 
account in English is given by Ikeda (1978)). Employing Engelund's (1974) second 
approximation to flow in meander bends, they heuristically explored the conse- 
quences of relaxing the restraint of fixed sidewalls. Neither a stability analysis nor a 
relation governing bank erosion was presented, however, and as a result several of the 
results are, in retrospect, incorrect (e.g. Ashida & Sawai 1977). 

In  the present analysis the heuristic model of Ikeda et al. is used to develop a formal 
stability theory of channels with sinuous banks. Bank erosion is described, and the 
stability criterion is in terms of the growth-rate of lateral bend amplitude. This aspect 
suggests the parlance of 'bend' theory, as opposed to the previously quoted 'bar' 
theories. The bend theory is applied to both the alluvial and incised cases. The linear 
theory herein yields a relation for initial characteristic bend wavelength that rather 
differs from that of Ikeda et al. and shows much better agreement with data. A com- 
parison with the predictions of one of the 'bar' theories indicates that, for alluvial 
streams, bar and bend instabilities operate a t  similar wavelengths when sinuosity is 
not too large. 

In part 2 of this work (Parker, Sawai & Ikeda 1982) nonlinear deformation of finite- 
amplitude bends is considered. 

2. Equations of fluid motion 
The analysis of bend instability is based on the St Venant equations of shallow 

water flow in a sinuous, slowly migrating channel with normal half-width b,  centreline 
located at  y" = y"(& f), and centreline curvature g(2, t) (figure 2). The following assump- 
tions are made. 

( I )  Normal channel width is constant. This is suggested by the observation that 
many meandering alluvial streams maintain roughly constant width even while 
actively migrating. Alluvial streams accomplish this by balancing erosion at  one bank 
with deposition at  the opposite bank. Vertical and lateral incision tend to balance in 
incised streams, leading to the same effect. 

(2) The centreline radius of curvature at the bend apex yo is large in the sense that 
v = b/ro < 1.  

(3) The classical quasi-steady assumption holds. 
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FIGURE 2. Definition diagrams. (a)  Meandering channel with erodible banks. The hatching 
indicates submerged point bars. ( b )  Cross-section A-A' of the meandering channel. 

The equations of motion for a sinuous channel can then be written as 

In the above p is water density; ii and 5 are depth-averaged velocity components in 
the S and Ti directions respectively (figure 2); g is the acceleration of gravity; ?%and 
f n  are the bed stresses; is local depth; and {is water-surface elevation. Also 6 = 5 - f j ,  
where f j  is bed elevation. The tilde is used to denote dimensional variables. 

Bed stresses are evaluated with the use of a friction factor (7,; - - 
7, = pC,%G, 7, = pc, %G) 

u 

where '22 = (C2+ G2)4. For the present analysis the crude assumption of constant C, is 
made. 

These equations can be directly linearized for small perturbations, so as to provide 
forms appropriate for the present linear analysis. However, a somewhat more intricate 



366 S. Ikeda, G .  Parker and K.  Sawai 

procedure is utilized herein so as to facilitate the nonlinear analysis of Part 2. The 
assumption of small v is used to carry out an informal expansion in this parameter. 
Only terms up to O(v2) ,  corresponding to Engelund’s (1974) second approximation, 
are retained here and in Part 2,  and the O(v3)  dynamic nonlinearities (so termed 
because they occur in the equations of motion) are dropped. 

However certain geometric nonlinearities associated with the transformation from 
intrinsic to Cartesian co-ordinates also arise. They are scaled by the parameter 
8, = 27ry0/h, where yo is initial bend amplitude and h is bend wavelength. The present 
linear analysis is performed for infinitesimal bends in the sense that 8, < 1 ; however 
in Part 2 O(80) geometric nonlinearities are retained, allowing for a treatment of 
finite-amplitude bends. The conditions under which neglect of O(v3)  terms but reten- 
tion of O(80) terms is valid are discussed in Part 2. 

Let U ,  H ,  and I be reach-averaged (e.g. over one wavelength) tangential velocity, 
depth, and down-channel energy slope. Also let to and 7, denote running reach- 
averaged water-surface bed elevations, given by [, = &. - Is’ and q0 = y r  - l a ,  where 
7, and Cr are reference elevations for which H = t, - 7,. Local flow is defined in terms 
of each of these unperturbed parameters plus a primed quantity denoting a perturba- 
tion induced by channel curvature; .ii = U+u’, fi = d, 6 = H+W, [ = to++, 

= qo + 7’ and @ = 0 + g‘, where h‘ = + - 7‘. An expansion of equations (1 a, 1 b,  1 c) 
in v up to O(v2) yields the following results. For zeroth order, equations (1 a )  and (1 c )  
yield 

CfUz = gHI; UH = qw, (2) 

where qw is constant water discharge per unit width; (1 b )  vanishes. Equations ( 1  a )  
and (1 c) do not contribute at  O ( v ) ;  ( 1 b )  yields 

Equation (1 b )  does not contribute a t  O(v2);  (1 a )  and (1 c) yield, respectively, 

The reach-averaged values of U ,  H ,  and I may be taken to be spatially constant, 
but must vary slowly in time. As bends grow, the channel centreline arc-length over 

one Cartesian wavelength y-ldz, where y = [1+ (atJ/L%)2]-$, must increasein time. 

If the stream is to experience neither aggradation nor degradation in its valley, the 
elevation drop Az over one wavelength must be constant in time. Reach-averaged 

so” 
channel slope is then 

I0 p’ =- AZ I =  
(4) 

where I ,  = Az/h  is valley slope, y = cos6, and the overbar denotes averaging over 
one wavelength. Thus channel slope must decrease as sinuosity increases in time, and 
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1 = I ( t ) .  It then follows from (2) that U and H must vary in time as well. The effect 
is embodied in the geometric nonlinearity of the expression for arc-length in g. 

Equation (3a)  integrates to yield 

(5) 
1 

g 
5' = -qgfU2%. 

This must be supplemented by a relation for 7'. The St Venant equations do not 
allow for a treatment of secondary flow in bends, and the resulting lateral variation 
in bed elevation. However, Engelund (1974), Ikeda (1975), Kikkawa, Ikeda & Kita- 
gawa (1976), and Zimmerman & Kennedy (1978) have analysed this problem with 
three-dimensional treatments of the alluvial case. Their result to O ( Y )  is 

where A is an O( 1)  parameter. Examination of the governing equations indicates that 
this result is not changed at  O(v2). Engelund (1974) used this fact and equations (3a) 
and ( 3 b )  (equations (47) and (52) in his analysis) to obtain an 0(v2) description of 
tangential velocity variation u' and bed topography that exhibits good agreement 
with the experimental data of Hooke (1975). 

Engelund suggested a constant value of A of about four. The theories of Kikkawa 
et al. (1976) and Zimmerman & Kennedy (1978) predict similar values, but both 
theories predict that A should increase with U .  Herein the problem of specifying this 
variation is avoided by simply using an average value of A based on field data. An 
analysis of 45 bends of ten alluvial rivers in Japan based on data collected by Suga 
(1963) suggests an average value of 2.89, although the data show much scatter. This 
value is used herein for the alluvial case. 

In order to evaluate bank erosion, it will prove useful to determine near-bank 
velocity. An equation for ui = (u ' )%=~ can be developed by substituting (5) and (6) 
into (3b) and evaluating at  fi = b ;  it  is found that 

Relations (2) and ( 7 )  are now made dimensionless. The scales used are U, and H,, 
the values that U and H would take in a graded (other than meandering tendencies) 
perfectly straight channel with width equal to 2b and channel slope equal to the 
valley slope I, .  Let f = Hox, y" = H,y, U = U,X(t), and H = H,E(t). Then 

y( t )  = cose = (l+(g)2j-4, 

- - and from (2) and (4) 
x ( t )  = [7-1]-4 a(t) = x-1. 

In  addition, where U; = Uou, %f = H;lV,  d = N o s  and fi = H,n, (7) reduces with the 
aid of (9) to 

(10) 
au 
as 

where b* = b/H,  and F = U,/(gH,)*. 

The reason for expressing (7) ,  and by implication (lo), in terms of 'north' bank 
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FIGURE 3. Diagram for derivation of the equation of bank erosion, ( 1 1 ) .  

velocity (at f i  = b;  see figure 2) is related to  the equation of bank erosion developed in 
the next section. 

3. Equation of bank erosion 

in figure 2. If v is sufficiently small geometrical considerations dictate that 
Let 6 be the rate of normal bank erosion in, say, metreslyear of the ‘north’ bank 

where y = cos 8 (figure 3). This equation describes ‘north’ bank erosion (or deposition 
if [ is negative). The condition of constant normal width assures that in the alluvial 
case erosion of the ‘north’ bank corresponds to equal deposition at  the ‘south’ bank. 
Equation (1  1 )  can also be applied to incising bends, the location of the ‘south ’ bank 
being again determined by the condition of constant width, in this case maintained 
by a balance between lateral erosion and vertical incision. 

Now [is assumed to be a function of tangential flow velocity near the ‘north’ bank 
G(B, = U + ~ ’ ( 3 ,  b).  Its functional form is estimated as 

u’(s“,b) = C(U)+E(U)u’(d,b) ,  

where E( U )  = [dC/dii]I is a positive coefficient of bank erosion. In the above [( U )  
is assumed to vanish. This latter condition implies that reach-averaged river width is 
in grade, and that only local variation from reach-averaged values can cause bank 
migration. Thus for the alluvial case, (12) implies that the ‘north ’ bank erodes where 
near-bank velocities are above the reach-averaged value (u‘(E, b )  > 0)’ with conse- 
quent deposition on the adjacent ‘south’ bank, and vice versa if u‘(s“, b)  < 0. A 
similar interpretation applies to the incised case. Sawai & Ashida (1979) have deve- 
loped methods for estimating E for cohesive material. 

Relations (1  1) and (12) reduce to the dimensionless form 

yaylat = E(x)u ,  where t = ZUo/Ho. (13) 

The nonlinear analysis of Part 2 requires that an assumption be made as regards the 
dependence of E on reach-averaged velocity U (Le. x). Consider two adjacent reaches, 
one with a slightly higher channel slope and therefore a swifter reach-averaged flow 
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velocity than the other. The swifter flow velocity suggests a higher rat,e of bank 
erosion at the outside of a bend (and thus a higher rate of deposition a t  the inside). If 
this is correct, then E ( x )  can be taken to be a monotonically increasing function of x. 
This assumption is reasonable and is made herein; however it should be noted that 
the problem is more complex than this, in that E might also depend on the variation 
of sediment load available for deposition. A consequence of the assumption is 

Thus, if the magnitude of x - 1 is not large, a Taylor expansion of E about x = 1 yields 

where E ,  = E(1). 
E(X) = Eo[I+e(x- 1 ) 1 2  (14) 

Fortunately, the parameter e plays no role in the linear theory. 

4. The bend equation 

dimensionless form. 
The transformations from intrinsic to Cartesian co-ordinates dictate that, in 

Equations (lo), (13) and (14) reduce with these to yield the nonlinear bend equation 
expressed in Cartesian co-ordinates : 

I n  the above the constant E,b* has been absorbed by the transformation Eob*t+t. 
x and y are nonlinearly coupled to  y via equations (8) and (9). 

The term ay/ax can be estimated as 2nyo/h, where yo and A, are dimensional quan- 
tities. Defining dimensionless amplitude and wavenumber e = yo/Ho and k = 2nHo/h, 
respectively, the following order-of-magnitude estimate can be obtained: 

(8yliiz)Z - @, 

where So = ke. I n  the limit of small So, corresponding to small-amplitude bends, then, 
x g 1,  y g 1 and (15)  linearizes to 

I n  the above both amplitude-dependent geometric nonlinearities and curvature- 
dependent dynamic nonlinearities have been removed. 

5. Linear stability analysis 

fluctuation 

is considered. I n  the above a, is dimensionless amplitude growth-rate and wo is 
dimensionless migration frequency; co = w o / k  is downstream bend migration speed. 

For the purpose of studying the stability of straight banks, the bank geometry 

y = e eaot cos (kx - w o t )  (17 )  
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The subscript zero refers to the fact that these values are to be obtained from a linear 
theory. In  the companion paper they are expanded in 8, to obtain expressions of the 
general type a = a. + e2a2 + . . . . Insertion of ( 1 7 )  into ( 1 6 )  yields the dispersion 
relations 

( 1 8 )  
cfk3(2 + A  + ~ 2 )  "0 2C,2(A + F2) k2 - k4 

k2 + 4C; w, = k2+4Q; 9 C o = p  ao= 

k < 4 2  C, ( A  + F2)*, 
It is seen that instability occurs if 

(19) 

where the right-hand-side corresponds to the wavenumber of neutral instability. 

condition aa0/ak = 0; it is found to be 
The wavenumber k,, at which instability is maximized can be obtained from the 

where 
kOM = PCf 9 

p 2  = 4 ( 1 +  $ (A + F2))& - 4. 

At k = koM,  a, and wo are found to take the values 

aOM = i P 2 k 8 M ,  

"OM = Bk;M/3( l  + $b2)* 
Two cases are of particular interest. Nearly all natural alluvial meandering streams 

a t  flood stage satisfy the condition F2 < A where A is approximated by 2.89 as 
previously mentioned. In the alluvial case, then, /3 g 1.50 and the approximate forms 

ko, = 1*50Cf, a o M  = 0 * 5 6 4 k z M ,  "OM = 1 .17k ,2M ( 2 4 a ,  b ,  c )  

are obtained. Downstream migration speed at  maximum instability is cOM = "OM jk,,, 
or 

cOM = 1 . 1 7 k o M .  (25 )  

The other case of interest is that of a laterally flat bed ( A  = 0) .  For this case, which 
is later shown to apply to some cases of incised meandering, 

and also 
ko, = p*Cf, aoILz. = $/3*21c8M, "OM = +/3*k$M( 1 +$/I*') ( 2 6 ~ ,  b, C )  

cOM = +/3*kOM(1 + $p*'), (27) 

where /3* = 2( - 1 + (1 + +F2)4]4. For the case of alluvial rivers, +F2 is generally small, 
so that p* F and, for example, 

k,, g C f F .  (28) 

In general, for A 2 0 a range of wavenumbers for which bends grow in amplitude 
is seen to exist. From ( 1 8 )  it  is seen that bends always migrate downstream, whether 
stable or unstable, and regardless of Froude number. This result represents a correc- 
tion of the heuristic conclusion reached in Ikeda et al. ( 1 9 7 6 )  that stable bends migrate 
upstream. In addition equation (24a) predicts meander wavelengths that differ 
considerably from the result k,, = 4% C, F obtained therein. 
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6.  Discussion 
The relation of the bend theory to bar theories merits some discussion. 
The bend theory incorporates the occurrence of point bars on the inside of each 

bend via (6); point bar location is determined by curvature. The location of alternate 
bars in straight-channel bar theories is arbitrary. The two types of bars, and thus the 
two stability mechanisms, are fundamentally different. Straight-channel bar theories 
drop curvature in ( l b )  but retain inertial and friction terms involving i7, which are 
required for bar instability; the situation is reversed for the bend theory. Amore 
general three-dimensional formulation retaining all linearized terms in a relation 
analogous to (1  b) would thus be likely to exhibit a dual instability mechanism. 

In order to clarify the range of influence of each mechanism, it is useful to consider 
a meandering channel that has developed point bars on the inside of the bends. Into 
this channel the further perturbation of an alternate-bar pattern with bed elevation 
amplitude 7, and arbitrary location and wavelength A,, is introduced. The tangential 
velocity perturbation u' due to bends and alternate bars can be estimated as U(b/r , )  
and U(va,/H) respectively; according to (1 c )  vf can be estimated as 

respectively. The ratio of inertial to curvature terms in ( l b )  can thus be shown to 
scale as 

ratio N f-)3 and ratio N (E)  bro I?_. 

for bends and alternate bars respectively. For the latter case, A, may be held constant 
as curvature becomes arbitrarily small (r,-+oo); the ratio becomes large and the 
straight-channel bar approximation in (1 b )  is obtained. For the former case point-bar 
spacing is controlled by curvature; for sufficiently small curvature the ratio becomes 
small and the bend approximation of ( I  b) is obtained. 

Thus the bend approximation may require modification in meandering channels 
that exhibit bar spacings different from that imposed by curvature. Kinoshita (1957)  
has observed the bar structure in a large number of alluvial streams; he notes that in 
bends of small or moderate curvature each bend contains only one point bar, whereas 
in tortuous bends several alternate bars may be superimposed over a primary point 
bar. Likewise, Hooke's (1975) experiments in a channel of moderate curvature exhibit 
only point bars; this suggests that a range of small but non-vanishing curvature 
exists for which the bend mechanism is the more important of the two. However it is 
interesting that both mechanisms seem to operate at similar scales, as shown in the 
following section. 

7. Comparison with data 
The wavelength of maximum instability of a linear stability analysis of meandering 

is generally thought to provide a crude estimate of the wavelength of the finite- 
amplitude meanders realized in nature. This assumption is used herein, even though 
a complete justification is lacking. 

It is useful to compare the results of bend stability in this regard with those of 
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FIGURE 4. Test of equation (30) for alluvial data; the units are metres. 

alternate bar theories. To this end several results of Parker (1975) for incisional 
alternate bars and of Parker (1976) for alluvial alternate bars are quoted. Since 
k,, = 2nH,,/h is the wavenumber of maximum instability and 1 = nH0/2b, the 
results are 

and 

for the incisional and alluvial cases respectively; a is an O(1) function of Froude 
number which approximates to a constant for F 4 1. The constant depends on the 
choice of load and resistance relations. Parker & Anderson (1975) have found that 
( 30) provides reasonable estimates for laboratory experiments if a is approximated 
by a constant; the choice a z 0.707 is suggested by data. 

It is necessary to choose some representative 'dominant' discharge in order to 
analyse field data from alluvial channels. Herein the mean annual flood is used for all 
cases in which it is available; bankfull discharge is used otherwise. 

Equation (30) of alluvial bar theory and (24a) of alluvial bend theory are tested 

k z ~  = F-'(kJM + Z2)* tanh ( k z M  + P ) 4 ,  (29) 

k,M = ac? 1' (30) 

A 

1 Schumm 
- o Leopold, Wolman and Langbein 
- RiverinJapan - 

Kinoshita 
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FIGURE 5. Test of equation (24a) for alluvial data; the units are metres. 

against 158 sets of data from alluvial river trays and 73 sets from natural alluvial 
rivers in figures 4 and 5, respectively. The plots are in terms of observed ( A )  and 
predicted (Apred) wavelength rather than wavenumber. Both relations provide rough 
agreement. The data scatter less about the prediction of alluvial bar theory. On the 
other hand equation (24a) of bend theory contains no adjustable constant to be fitted 
to the data, whereas such a constant appears in (30). It may be that the scatter in 
figure 5 would be reduced if measured values of A for each stream were used instead 
of the 'typical' value of 2.89. 

A point of significance is that the meander wavelength predicted by the bend and 
alluvial bar theories are seen to be the same order of magnitude. 

The incised bar theory of Parker (1975) indicates instability only for supercritical 
flows; the bars do not migrate downstream. No assumption in the bend theory restricts 
it to the alluvial case. Thus (20) and (21) should apply to incised bends for an appro- 
priate choice of A .  Instability can occur for any Proude number; the bends migrate 
downstream. These features suggest the possibility of distinguishing between two 
types. Ashida & Sawai (1977) have observed the formation of incised rill meanders in 
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FIUURE 6. Test of equations (26a) (dark circles) and (29) (open circles) for data on incised rill 
meanders; hpred denotes the predicted wavelength. The units are centimetres. 
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FIUURE 7.  Test of equations (26a) (dark circles) and (29) (open circles) for data on supraglacial 
meltwater stream meandering; A,,, denotes the predicted wavelength. The units are metres. 

a cohesive sand-clay medium in the laboratory. Of eleven data sets reported therein, 
all but one are supercritical. No definite lateral bed inclination was observed; in light 
of this A was set equal to zero and (26a) of the bend theorywas used along with (29) 
of the bar theory to estimate meander wavelength. The results are shown in figure 6; 
the bend theory appears to predict the wavelength somewhat better than the bar 
theory even though the flows are generally supercritical. One more factor that suggests 
that these meanders are due to bend instability is the direction of migration. In  some 
runs irregularities associated with smaller-scale upstream-migrating two-dimensional 
erosional bedforms render any orderly bend progression difficult to perceive. In  other 
runs, however, a distinct pattern of downstream bend migration was observed, 
whereas a distinct pattern of upstream-migrating bends was observed for no run. 



Bend theory of river meanders. Part 1 375 

FIGURE 8. Planform centreline of a reach of Gardner’s Gut, New Zealand, an incised cave stream. 
The solid line denotes the present centreline of the stream, and the dashed line denotes the 
centreline two metres above the stream. From Smart (1977). 

The supraglacial meandering meltwater streams described by Dahlin (1974) and 
analysed by Parker (1975) present another type of incised meander. The data, con- 
sisting of seven sets from supraglacial streams on Baffin Island, do not include slope ; 
nevertheless C, could be estimated from known depths, velocities and water tem- 
peratures, and the KBrm&n-Prandtl resistance relation for smooth boundaries. For 
want of information about A ,  equation (26a)  was utilized to test the bend theory, 
along with (29) for the bar theory. The results, shown in figure 7, suggest that these 
incised meanders have their origin in the bar theory. No 0 ( 1 )  choice of A could 
improve the poor predictability of the bend theory much in this case. 

8. Unified interpretation of the growth of meanders 
Figures 4 and 5 indicate that alluvial bar and bend instability act at  characteristic 

wavelengths that are of the same order of magnitude. This justifies the assumption, 
implicit in previous studies, that alternate bar formation should be followed by the 
formation of a truly sinuous channel with bends exhibiting superelevation and 
secondary flow, such that each bend contains one alternate bar. 
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In  two cases of incised meandering analysed, those of model channels in cohesive 
material and supraglacial meltwater streams, it is seen that the two mechanisms 
operate at  differing scales. Figures 6 and 7 suggest that bend instability is responsible 
for the former, and bar instability for the latter. 

The analysis provides clues in other cases as well. In  figure 8 the planform of the 
bottom of a cave stream incised in limestone is shown with the planform two metres 
above. The direct evidence of downstream migration suggests that the bend instability 
is responsible for the meanders (Smart 1977). 

A final point of interest is the observation that incised field meanders often have 
larger wavelengths than alluvial meanders (e.g. Hack 1965). The condition $F2 < 1 
is probably satisfied in many of the larger of such streams. If the surmise A = 0 for 
incised meanders is correct, it is seen from equations (24a) and (28 )  that the ratio of 
incised wavelength to alluvial wavelength where flow conditions and channel geo- 
metry are the same is given by the ratio ,@IF2 = 2.2.?1F-~, so that incised meanders 
would have a larger wavelength. The data of Ashida & Sawai (1977) on incised rill 
meanders support the choice A = 0, and Smart (personal communication) has observed 
no systematic variation in lateral bed elevation at  the bed apexes of incised cave 
meanders, again suggesting the choice A = 0. Evidence to the same effect can be 
found in the voluminous set of cave surveys contained in Tratman (1969). 
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